Online Store - 8925533488 /89

Chennai - 8925533480 /81

Hyderabad - 8925533482 /83

Vijayawada -8925533484 /85

Covai - 8925533486 /87

Top Machine Learning Projects for Engineering Students

Top Machine Learning Projects for Engineering Students

Top Machine Learning Projects for Engineering Students

Pantech is a top machine learning projects for engineering students which helps to make some of the amazing real-world projects. The developing real-world systems is the best way to materialize theoretical knowledge into practical experience.

About Pantech

Pantech is a platform which helps to find out about the foremost effective machine learning techniques and gain practice implementing and also gain the sensible know-how needed to quickly and apply these techniques to new problems.

It teaches the advanced of top machine learning projects that help to become a professional and deliver the best techniques like packaging and deploying inventions to a production environment.

What is Machine Learning Definition

What is machine learning definition, is an application of artificial intelligence (AI) that provides systems the ability to learn and improve from experience without being explicitly programmed. It focuses on the use of data and algorithms to imitate the way that humans learn, gradually improving its accuracy.

List of Machine Learning Projects

Student Placement Prediction using AI | Machine Learning

Student Placement Prediction using AI Machine Learning 4

The main purpose is to develop machine learning algorithms for predicting the percentage of student placement prediction using Artificial Intelligence based on the data related to the university’s academic reputation, opportunities of the city where the university is located, facilities and cultural opportunities of the university. It is analyze previous year historical data and predict placement of current students and aids to increase the placement percentage of the institutions.

Text Summarization using NLP I Machine Learning

Top Machine Learning Projects for Engineering Students

The method of extracting these summaries from the original huge text without losing vital information. It is to identify the important sections, interpret the context and reproduce in a new way. This ensures that the core information is conveyed through shortest text possible. There are important applications for text summarization using NLP in various NLP related tasks such as text classification, question answering, legal texts summarization and news summarization. Moreover, the generation of summaries can be integrated into these systems as an intermediate stage which helps to reduce the length of the document.

Heart Disease Detection using Big Data

Top Machine Learning Projects for Engineering Students

The enormous information in health care is to be processed in order to identify, diagnose, detect and prevent the various diseases. Big data analysis contains large number of records. It develops a centralized patient monitoring system using big data. In the proposed system, large set of medical records are taken as input. Heart Diseases is a major health problem and it is the leading causes of death throughout the world. Thus, the system helps to classify a large and complex medical dataset and heart disease detection using big data.

Employee Attrition using Machine Learning

Top Machine Learning Projects for Engineering Students

A employee attrition using machine learning model is the output generated when to train machine learning algorithm with data. After training, when it provides a model with an input, will be given an output. It can be used in real time to learn from data. The improvements in accuracy are a result of the training process and automation that are part of machine learning. This project provides solution for the given problem as it gives a prediction model that can be used to predict which employee will leave the company and which will not leave. It helps in finding the exact reasons which are motivating the employees for shifting companies like lower salary, less promotions or heavy work load etc.

Smart Farming using Machine Learning

Top Machine Learning Projects for Engineering Students

The advances in machines and technologies used in smart farming using machine learning, useful and accurate information about different matters plays a significant role in it. It focuses on predicting the appropriate crop based on the climatic situations and the yield of the crop based on the historic data by using supervised machine learning algorithms. The only remedy to the crisis is to do all that is possible to make agriculture a profitable enterprise and attract the farmers to continue the crop production activities.

Bitcoin Price Prediction using Machine Learning | Python

Top Machine Learning Projects for Engineering Students

This approach to test the hypothesis that the inefficiency of the crypto currency market can be exploited to generate abnormal profits. It analyzed stock markets prediction; these methods could be effective also in predicting bitcoin price prediction using machine learning. It is predicted as the average price across the preceding days, and that the method based on long short-term memory recurrent neural networks systematically yields the best return on investment.

Churn Modelling Analysis using Deep Learning | Python

Top Machine Learning Projects for Engineering Students

Deep Learning is usually associated with having a high number of input layers, one or more hidden layers that connect input layers and perform computational algorithms to determine a probability to predict. The concept of churn modelling analysis using deep learning is the application area of analytical customer relation-ship management in the widest perspective. In fact, this application area is a sub-part of customer behavior modeling in customer analytics. From the marketing perspective, the concept of churn is associated with customer loyalty and customer value concepts that are related to each other.

Diabetes Prediction using Machine Learning | AI | Python

Top Machine Learning Projects for Engineering Students

This data set consists of information of user who age, type of symptoms related to diabetes. Data is classified and shown in the form of different graphs. The easy data analysis will show results of medical information of changes of getting diabetes on universal plots. Early diabetics prediction using machine learning in a human body or a patient for a higher accuracy through applying various Machine Learning techniques. It Provide better result for prediction by constructing models from datasets collected from patients.

KDD & Data Mining Approach for Finding Network Attacks

Top Machine Learning Projects for Engineering Students

With emerge of KDD and data mining approach for finding network attacks, the traditional techniques become more complex to deal with Big Data. Therefore, it intends to use Big Data techniques to produce high speed and accurate intrusion detection system. The results of the experiment showed that model has high performance and efficient for Big Data. It is a software application that monitors the network or system activities for malicious activities and unauthorized access to devices. The implementation of different data mining algorithms including linear regression and K-Means clustering to automatically generate the rules for classify network activities.

Cyber Threat Analysis on Android Apps

Top Machine Learning Projects for Engineering Students

It is an effectively and efficiently malicious applications detection tools needed to tackle and handle new complex malicious apps created by hackers. With idea of using machine learning approaches for detecting the malicious android application. It provides an efficient and convenient way to access, find and share information; however, the availability of this information has caused an increase in cyber treat analysis on android apps. The importance of developing a national security policy created for mobile devices in order to protect sensitive personal data.

Student Performance Prediction – Machine Learning

Top Machine Learning Projects for Engineering Students

Student performance prediction using machine learning analysis of outcome based on learning is a system which will strive for excellence at different levels and diverse dimensions in the field of student’s interests. It analyzes the student’s demographic data, study related and psychological characteristics to extract all possible knowledge. It provides the prediction of the academic success or failure without illustrating the reasons of this prediction. These attributes were from the same type of data category whether demographic, study related attributes, that lead to lack of diversity of predicting rules.

Hashtag Clustering using NLP | Machine Learning

Top Machine Learning Projects for Engineering Students

Hashtag clustering using NLP is the task of mapping text to its accompanying hashtags. In this process a novel model for hashtag prediction and show this task a useful surrogate for learning good representations of text. This hashtag based detailed query show the result as whether it will be positive or negative and random forest algorithm. The hashtag prediction provides a more direct form of supervision: the tags are labeling of the salient aspects of the text. Hence, predicting provide stronger semantic guidance than unsupervised learning. The abundance of hashtags provides a huge labeled dataset for learning potentially sophisticated models.

Rainfall prediction using machine learning

Top Machine Learning Projects for Engineering Students

Prediction of rainfall gives awareness to people and know in advance about rainfall to take certain precautions to protect their crop from rainfall. It was conclude the enhancements, optimizations and integrations of data mining methods are vital to explore and solve these problems. It provides a critical analysis and review of latest data mining techniques used for rainfall prediction and predict rainfall with maximum accuracy by optimizing and integrating data mining techniques.

Credit card fraud detection using Deep Learning

Top Machine Learning Projects for Engineering Students

It mainly focused on credit card fraud detection using Deep Learning. After classification process of random algorithm to analyze data set and user provide current dataset. It will apply the processing of some of the attributes provided can find affected fraud detection in viewing the graphical model visualization. The deep learning methods for the credit card fraud detection compare the performance with three different financial datasets. Experimental results show great performance of the deep learning methods can be implement effectively for real-world credit card fraud detection systems.

Fake News detection using machine learning

Top Machine Learning Projects for Engineering Students

It describes incorrect and misleading articles published mostly for the purpose of making money through page views. The topic of machine learning methods for deception detection, most of it has been focusing on classifying online reviews and publicly available social media posts. This project could be practically use by any media company to automatically predict whether the circulating news is fake or not. The process could be done automatically without having humans manually review thousands of news relate articles.

Fake profile identification Machine learning

Top Machine Learning Projects for Engineering Students

This method can be extend on any platform that needs binary classification to be deploy on public profiles for various purposes. It uses available information which makes it convenient for organizations that avoid any breach of privacy. The organizations use private data to further extend the capabilities of the proposed model. This model uses classification technique and can process a large dataset of accounts at once, eliminating the need to evaluate each account manually.

Stock market prediction using Classification

Top Machine Learning Projects for Engineering Students

Stock market prediction is the act of trying to determine the future value of a stock from social media social media offers a robust outlet for people thoughts and feelings Analysis of social media is strongly related to sentiment analysis. It is use for analyzing social network content and improves the average accuracy.

Student Performance analysis

Top Machine Learning Projects for Engineering Students

The proposed framework analyzes the students’ demographic data, study related and psychological characteristics to extract all possible knowledge from students, teachers and parents. Seeking the highest possible accuracy in academic performance prediction using a set of powerful data mining techniques. Performance analysis of outcome based on learning is a system which will strive for excellence at different levels and diverse dimensions in the field of student’s interests.

Detecting Malware Websites using Machine Learning

Top Machine Learning Projects for Engineering Students

Malicious Web sites promote the growth of Internet criminal activities and constrain the development of Web services. As a result, it develops systemic solution to stopping the user from visiting such Web sites. Thus, it eliminates the possibility of exposing users to the browser-based vulnerabilities.

Liver Disease Prediction using Machine Learning

Top Machine Learning Projects for Engineering Students

This dataset was use to evaluate prediction algorithms in an effort to reduce burden on doctors. It will take results of how much percentage patients get disease as a positive information and negative information. Thus, outputs show from proposed classification model indicate that Accuracy in predicting the result. The liver disease may cause the appearance of malignant in the liver and affects the rest of the body.

Loan Approval Prediction using Machine Learning

Loan approval prediction 4

With the enhancement in the banking sector lots of people are applying for bank loans but the bank has its limit assets which has to grant to limited people, so as to find to whom the loan can be grant which will be a safer option for the bank is a typical process. It reduces this risk factor behind selecting the safe person so as to save lots of bank efforts and assets. The analysis will be done to find the most relevant attributes, i.e., the factors that affect prediction result the most.

Hate speech Detection using Machine learning

Hate speech Detection Using Machine learning

The exponential growth of social media such as Twitter and community forums has revolutionize communication and content publishing, but is also increasingly exploit for the propagation of hate speech and the organization of hate-based activities. The structures serving as feature extractors that are particularly effective for capturing the semantics of hate speech and methods are evaluate on the largest collection of hate speech datasets based on twitter to outperform of identifying hateful content.

Ground water level Prediction

Ground water level Prediction scaled

It analyzed the data for observation of wells in each of the districts and developed seasonal models to represent the groundwater behavior and captures trends on water levels in observation wells, the rainfall model explores the correlation between the rainfall levels and water levels. The periodic and polynomial models are develop only using the groundwater level data of observation wells while the rainfall model also uses the rainfall data.

Road accident Analysis and classification

Road accident Analysis and classification 4

It can be detect by developing an accurate prediction model which will be capable of automatic separation of various accidental scenarios. These cluster will be useful to prevent accidents and develop safety measures. It acquires maximum possibilities of accident reduction by using some scientific measures. It determines the significantly affect the severity of the driver’s injuries which is cause due to the road accidents. Accurate and comprehensive accident records are the basis of accident analysis. The effective use of accident records depends on some factors, like the accuracy of the data, record retention, and data analysis.

Human Activity Recognition

Human activity Recongization

It utilizes smart data as a means of learning and discovering human activity patterns for health care applications. This uses frequent pattern mining, cluster analysis, and prediction to measure and analyze energy usage changes sparked by occupant’s behavior. It is use for each of the methods wherein the data are collect by different means such as sensors, images, accelerometer, gyroscopes, etc. and the placement of these devices at various locations.

Crime Analysis using K means

Crime Analysis using K means

This system will prevent crime occurring in society. It is analyze which is store in the database. Data mining algorithm will extract information and patterns from database. Clustering will be done based on places where crime occur, gang who involve in crime took place. This will help to predict crime which will occur in future.

Intrusion Detection using Classification

Intrusion Detection using Classification

Intrusion detection system (IDS) is a system that monitors and analyzes data to detect any intrusion in the system or network. High volume, variety and high speed of data generated in the network have made the data analysis process to detect attacks by traditional techniques very difficult. It used k-Means method in the machine learning libraries on spark to determine whether the network traffic is an attack or a normal one.

Message Classification in Facebook learning group using ML

Message Classification in facebook learning group using ML

Social media systems which include Facebook, Instagram, Twitter, etc. has brought an exponential boom with the mistreatment of human beings of hateful messages, bullying, sexism, racism, competitive content, harassment, poisonous remark etc. Thus, there’s an in depth to identify, manage and decrease the bullying contents unfold over social media sites, which has stimulated to behavior to automate the detection method of offensive language or cyberbullying.

ML Model to Improve Learning process and Reduce Dropout Rates

ML Model to Improve learning process and reduce droupout rates

It presents a systematic review of methodologies that propose ways of reducing the dropout rate in Virtual Learning Environments (VLE). This generates large amounts of data about courses and students whose analysis requires the use of computational analytical tools. It aims to identify solutions that use Machine Learning (ML) techniques to reduce these high dropout rates. The amount of data collected through educational database and it increasing rapidly in volume which allows statistical analysis, data mining, and predictive actions.

ML based Opinion mining online Customer Reviews

ML based opinion mining online customer reviews

Applying machine learning algorithms for learning, analyzing and classifying the product information based on the customer experience. The product data with customer reviews is collect from unified computing system (UCS) which is a server for data-based computer for evaluating hardware, support to visualization, software management. Thus, it determines the significance of understanding customer’s opinion in terms of the shopping experience in a particular ecommerce website.

Detection of distributed service attacks in SDN using ML

Detection of distributed service attacks in SDN using ML

A software-defined network (SDN) is a network that used to build, design hardware components virtual and dynamic change the settings of network connections. It consists of three planes such as data plane, control plane and application plane. It improves the network performance by decoupling control and forward function. The control programs running in a logically centralized controller will control multiple routers across the network.

Data Poison Detection using Machine Learning

Data Poison detection using machine learning

A massive dataset training when no single node can work out the accurate results within an acceptable time. However, this will inevitably expose more potential targets to attackers compared with the non-distributed environment. It improved data poison detection scheme to provide better learning protection with the aid of the central resource. To efficiently utilize the system resources, an optimal resource allocation approach is develop.

Prediction of Election Result based on Twitter Data

Prediction of Election result based on twitter data

Sentiment analysis methods have been use to improve the predictive results of counting methods. It significantly in relation to the observation period, the data collection and cleansing methods, and the performance evaluation strategy. For predicting election results in diverse places around the world have utilized machine learning models to advanced deep learning algorithms. It is to extract strong sentiments from Twitter data linked to elections and used a time series method to forecast final outcome.

Ransomware Detection and Classification using Machine Learning

Ransonmware Detection and Classification Using Machine Learning

Ransomware is a type of malware that prevents user from using computer or mobile phone for accessing certain files unless the user pays a ransom which is often by credit card. The major types of malwares, ransomware, encrypts a user’s sensitive information and returns the original files to the user after a ransom is paid. It extracts high-level flow features from the traffic and use this data for ransomware classification.

Netflix Stock Market Prediction using Machine Learning

Netflix Stock Market Prediction using machine learning

The prediction of share prices is the function of deciding future price of company stock or other commercial tools. It performed for the prediction of stock index value and daily direction of change in the stock index. Such huge numbers of models have been create for foreseeing the future stock costs. This develop and assess different techniques to see future stock trades and experimental results states different classification techniques can be successfully deploy for share price prediction.

Crime Detection and Classification using Fuzzy Logic Techniques

Crime Detection and Classification using Fuzzy Logic Techniques

Identifying crime patterns allow to tackle problems with unique approaches in crime category and improve more security measures in society. It involves predicting crimes classifying, pattern detection and visualization with effective tools and technologies. The use of past crime data helps to correlate factors that might help to understand the future scope of crimes.

Agricultural Price Prediction using Machine Learning

Agricultural Price Prediction using Machine Learning

Agriculture creates an economic future for developing countries, the demand for modern technologies in this sector is higher. The key technologies used for this problem are Deep Learning, Machine Learning, and Visualization. As the product, an android mobile application is develop and the users input their location to start the prediction process. It is to detect the nature and quality of soil in a particular area considering level at the time and predicting future value using ML model.

0 0 votes
Customer Ratings
Notify of
Inline Feedbacks
View all comments
Would love your thoughts, please comment.x
Open Whatsapp Chat
Need Any Help?
Welcome to Pantech eLearning!..

How can i help you?