Monopole Antenna for Quad Band

SKU: PAN_ANT_017 Category: Tags: , ,

Description

* Sale Price for only Code / simulation – For Hardware / more Details contact : 8925533488

  • This is the method we find the motion of the particular object we going draw or write the exact mean of that particular motion. By achieve this exact process we will going to use the some algorithms, that algorithm is Hidden Markov Algorithm. If we get motion in front of our sensor it will recognize by use this algorithm it?s generate and draw the exact mean of the motion. In existing system of this concept they use analyze the motion and draw approximate output in screen. But our method we draw the exact motion and we also used this method for the virtual key generation and this output we show like 2-D trajectory and also we will recognize the word error of the exact drawing. We will analyze the 6-DOF (Degree Of Freedom) motion of the recognition.

EXISTING SYSTEM:

  • SVM classifier
  • K means clustering

DRAWBACKS:

  • High Computational load
  • Poor discriminatory power
  • Less accuracy in classification

PROPOSED SYSTEM:

  • In this concept we can used to make virtual keyboard also.
  • Output shows like virtual reality.
  • More than accuracy of the key recognition.

BLOCK DIAGRAM:

 

 

 

APPLICATION:

  • Desktop computer
  • Mobile computer

SOFTWARE REQUIREMENTS:

  • Open CV
  • Python language

REFERENCE:

[1] Ting, R., S. Chun-lin, and D. Jian, Handwritten character recognition using principal component analysis. MINI-MICRO Systems, 2005. 26(2): p. 289-292.

[2] Walid, R. and A. Lasfar. Handwritten digit recognition using sparse deep architectures. in Intelligent Systems: Theories and Applications (SITA-14), 2014 9th International Conference on. 2014. IEEE.

[3] Li, Z., et al. Handwritten digit recognition via active belief decision trees. in Control Conference (CCC), 2016 35th Chinese. 2016. IEEE.

[4] Schmidhuber, J., Deep learning in neural networks: An overview. Neural Networks, 2015. 61: p. 85-117.

[5] LeCun, Y., Y. Bengio, and G. Hinton, Deep learning. Nature, 2015. 521(7553): p. 436-444.

[6] Hinton, G.E. and R.R. Salakhutdinov, Reducing the dimensionality of data with neural networks. Science, 2006. 313(5786): p. 504-507.

[7] Yu, K., et al., Deep learning: yesterday, today, and tomorrow. Journal of computer Research and Development, 2013. 50(9): p. 1799-1804.

[8] Sun, Z.-J., et al., Overview of deep learning. Jisuanji Yingyong Yanjiu, 2012. 29(8): p. 2806-2810.

[9] Bengio, Y., Learning deep architectures for AI. Foundations and trends? in Machine Learning, 2009. 2(1): p. 1-127.

[10] LeCun, Y., C. Cortes, and C.J. Burges, The MNIST database of handwritten digits. 1998.

[11] Bouchain, D., Character recognition using convolutional neural networks. Institute for Neural Information Processing, 2006. 2007.

[12] Hinton, G.E., S. Osindero, and Y.-W. Teh, A fast learning algorithm for deep belief nets. Neural computation, 2006. 18(7): p. 1527-1554.

[13] Wu, M. and L. Chen. Image recognition based on deep learning. in Chinese Automation Congress (CAC), 2015. 2015. IEEE.

[14] Fischer, A. and C. Igel. An introduction to restricted Boltzmann machines. in Iberoamerican Congress on Pattern Recognition. 2012. Springer.

[15] Ciregan, D., U. Meier, and J. Schmidhuber. Multi-column deep neural networks for image classification. in Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on. 2012. IEEE.

Customer Reviews

There are no reviews yet.

Be the first to review “Monopole Antenna for Quad Band”

Your email address will not be published. Required fields are marked *

Identification and classification of pedestrian in videos with LBP based background subtraction and HOG descriptor

Download / View