Matlab Code for Segmentation of Image using Otsu Thresholding

SKU: PAN_IPM_188 Categories: ,


The project presents an automatic gray scale image segmentation using iterative Triclass thresholding technique. This technique was extended from the standard Otsu method for image partitioning into foreground and background region effectively.

The iterative method starts with Otsu?s threshold and computes the mean values of the two classes as separated by the threshold. Based on the Otsu?s threshold and the two mean values, the method separates the image into three classes instead of two regions.

The first two classes are determined as the foreground and background and it will not be processed further. The third class is a desired region to be processed at next iteration. At the succeeding iteration, Otsu?s method is applied on the desired region to calculate a new threshold and two class means and the desired region is again separated into three classes, namely, foreground, background, and a new target region.

The process stops when the Otsu?s thresholds calculated between two iterations is less than a predefined threshold. Then, all the intermediate foreground and background regions are, respectively, combined to create the final segmentation result.

?After this process, Morphological filtering will be used to smooth the segment the region by removing the back ground noise and false detection. Finally, the target regions are extracted with better accuracy. The simulated results will be shown that used algorithm for this process generates accurate detection of objects rather than previous methods.

Customer Reviews

There are no reviews yet.

Be the first to review “Matlab Code for Segmentation of Image using Otsu Thresholding”

Your email address will not be published. Required fields are marked *