LoRa based Renewable Energy Monitoring System with Open IoT

Ask For Price

Description

ABSTRACT:

As a result of the response to the COP21, various renewable energy plants have been globally developed from conventional fossil fuel-based power generation plants. However, such renewable energy sources are difficult to operate in a planned schedule and have unstable output due to unpredictable environmental conditions such as the weather. It is possible to manage the power generation system more stably by collecting, analyzing, and responding to the information on continuous power generation status, and the accumulated data provides an advantage for predicting future power generation and optimal maintenance. This improved stability has also contributed to grid reliability and flexibility. In this paper, we propose implementation methods to effectively construct an energy monitoring system that is based on open IoT hardware and software platforms for economic system construction. Lora supporting low-power long-distance networks is applied through low-cost solutions.


INTRODUCTION:

In this system, a renewable power generation system is monitored through a number of sensors. The main parameters that need to be monitored here are energy produced which can be calculated by measuring current and voltage. Using current and voltage values energy produced can be easily calculated. Here we can use any type of embedded controller, in this, we can use the Arduino platform for our development. Since Arduino is an open-source platform this makes the project more financially feasible. indoor LoRa devices may still be unable to communicate wirelessly with a nearby GW, due to obstacles between sensors, which can attenuate wireless signal strength and result in data losses and communication errors.


EXISTING SYSTEM:

  • Unmonitored power generation systems
  • Local monitoring systems

DISADVANTAGES:

  • In unmonitored power generation systems, we can’t able to know what is happening in that system, anything may happen like a short circuit, overflow, etc..,
  • Local monitoring is used within a range it is the main drawback of this project
  • Renewable energy sources are difficult to operate in a planned schedule and have unstable output due to unpredictable environmental conditions such as the weather.
  • Not for large data payloads, payload limited to 100 bytes

PROPOSED SYSTEM:

In this system, we propose a monitoring system for renewable power generation systems. Here we are using LoRa communication for interconnecting all the different nodes. The current sensor and voltage sensor are used for monitoring the power produced, this data is transmitted to a remote collecting node for further analysis. Here we use IoT for further remote data access. The Arduino platform is used for developing the project.

ADVANTAGES:

  • It is a cost-efficient renewable energy monitoring system,
  • Using IoT in this project is the main advantage, so we can get the status of the system at any place in the world
  • An?advantage?of predicting future power generation and optimal maintenance.
  • Advantages easy deployment real-time accessibility, low deployment, and a device that has a wireless connection and can be powered by using a?solar?panel.
  • Accuracy of output is increased
  • Lora’s long-range communication is used

BLOCK DIAGRAM:

LoRa based Renewable Energy Monitoring System with Open IoT TRANSMITTER

LoRa based Renewable Energy Monitoring System using Node MCU

 

LoRa based Renewable Energy Monitoring System using Node MCU 2


BLOCK DIAGRAM DESCRIPTION:

  • Here in sensor node Node, MCU is used
  • Both sensors are connected to Node MCU through an analog interface (ADC)
  • Lora is connected through the serial interface
  • In the data node, another Node MCU is used because we need to connect this node to cloud
  • Receiver LoRa is connected to this nodemcu

HARDWARE REQUIREMENTS:

  • Node MCU ESP8266
  • Lora
  • Current sensor
  • Voltage sensor
  • PV panel
  • ADC

SOFTWARE REQUIREMENTS:

  • Arduino IDE
  • Programming: Embedded C

REFERENCES:

[1]? Y. Cheng et al., ?iCloud: A cloud-based air-quality monitoring system for everyone,? in Proc. SenSys, Nov. 2014, pp. 251? 265.

[2]??????? J. Shah and B. Mishra,?IoT enabled environmental monitoring system for smart cities,? in Proc. Int. Conf. Internet Things Appl. (IOTA), Jan. 2016, pp. 383? 388.

[3] ????? B. Ando, S. Baglio, A. Pistorio, G. M. Tina, and C. Ventura, ?Sentinella: Smart monitoring of photovoltaic systems at panel level,? IEEE Trans. Instrum. Meas., vol. 64, no. 8, pp. 2188?2199, Aug. 2015.

?[4] ???? G. Mois, S. Folea, and T. Sanislav, ?Analysis of three IoT-based wireless sensors for environmental monitoring,? IEEE Trans. Instrum. Meas., vol. 66, no. 8, pp. 2056?2064, Aug. 2017.

[5]??????? Sigfox. (2017). Sigfox?The Global Communications Service Provider for the Internet of Things (IoT). Accessed: Sep. 2, 2017. [Online]. Available: https://www.sigfox.com/en


 

Customer Reviews

There are no reviews yet.

Be the first to review “LoRa based Renewable Energy Monitoring System with Open IoT”

Your email address will not be published. Required fields are marked *